

ELETTROVALVOLE ED ELETTRODISTRIBUTORI MONITORATI

DS3M ISO 4401-03 DS5M ISO 4401-05 DSP5RM ISO 4401-05 DSP5M CETOP P05 DSP7M ISO 4401-07 DSP8M ISO 4401-08 DSP10M ISO 4401-10

PRINCIPIO DI FUNZIONAMENTO

- Le elettrovalvole monitorate sono provviste di un sensore di posizione che segnala la posizione del cursore principale della valvola.
 La posizione di commutazione è indicata con un segnale binario.
- L'ente certificatore TÜV certifica la conformità delle valvole DS(P)*M alle normative per la sicurezza (vedere paragrafo 1).
- Le valvole sono disponibili solo in corrente continua (vedere paragrafo 9).
- —Queste valvole non hanno comando manuale e non possono essere disassemblate, a causa delle loro caratteristiche e del possibile impiego su macchinari sottoposti a requisiti di sicurezza. Inoltre, i loro componenti non sono intercam-biabili. Leggere il manuale di uso e manutenzione per istruzioni sul funzionamento, l'utilizzo sicuro e la riparazione del prodotto.

PRESTAZIONI

(rilevate con olio minerale con viscosità di 36 cSt a 50°C)

		DS3M	DS5M	DSP5M DSP5RM	DSP7M	DSP8M	DSP10M
Pressione massima d'esercizio: attacchi P - A - B	bar	350	320	320	350	350	350
attacco T		2.	10	vedere	e limiti di impi	ego al paragr	afo 6.5
Portata massima dall'attacco P verso A - B - T	l/min	80	120	150	300	600	1100
Campo temperatura ambiente	°C			-20 /	+50		
Campo temperatura fluido	°C			-20 /	+80		
Campo viscosità fluido	cSt		10 ÷ 400				
Grado di contaminazione del fluido			secondo ISO 4406:1999 classe 20/18/15				
Viscosità raccomandata	cSt	25					
Massa: valvola monosolenoide valvola doppio solenoide	kg	1,8 2,2	5 -	7,1 8	8,7 9,6	15,6 16,6	50 50,5

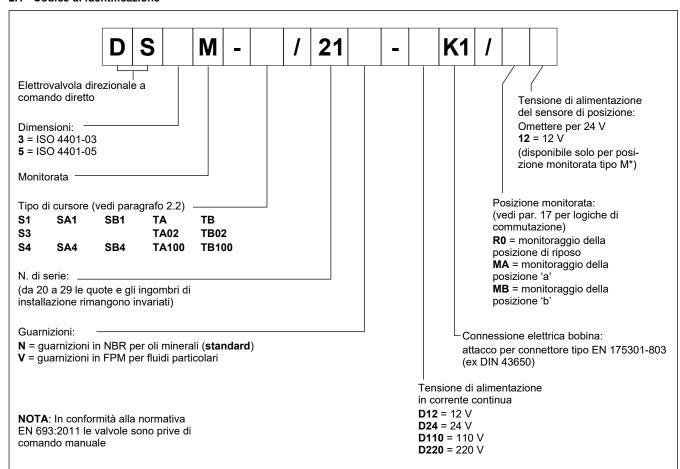
41 505/123 ID 1/30

1 - CERTIFICAZIONE TÜV

Le elettrovalvole e gli elettrodistributori della famiglia DS(P)*M sono state verificate su base volontaria da TÜV e sono risultate essere conformi ai requisiti applicabili della norma sotto riportata:

• EN ISO 4413: 2012 - Oleoidraulica - Regole generali e requisiti di sicurezza per i sistemi e i loro componenti. I componenti sono inoltre considerati conformi se rispettano i principi di sicurezza di base e i principi di sicurezza comprovati specificati nelle tabelle C.1 e C.2 della norma EN ISO 13849-2:2013 a seconda della specifica applicazione.

La famiglia DS(P)*M può essere utilizzata in circuiti di comando con funzione di sicurezza in categoria 1 (o superiori) come indicato nella norma EN ISO 13849-1:2015. Possibili applicazioni sono le norme:

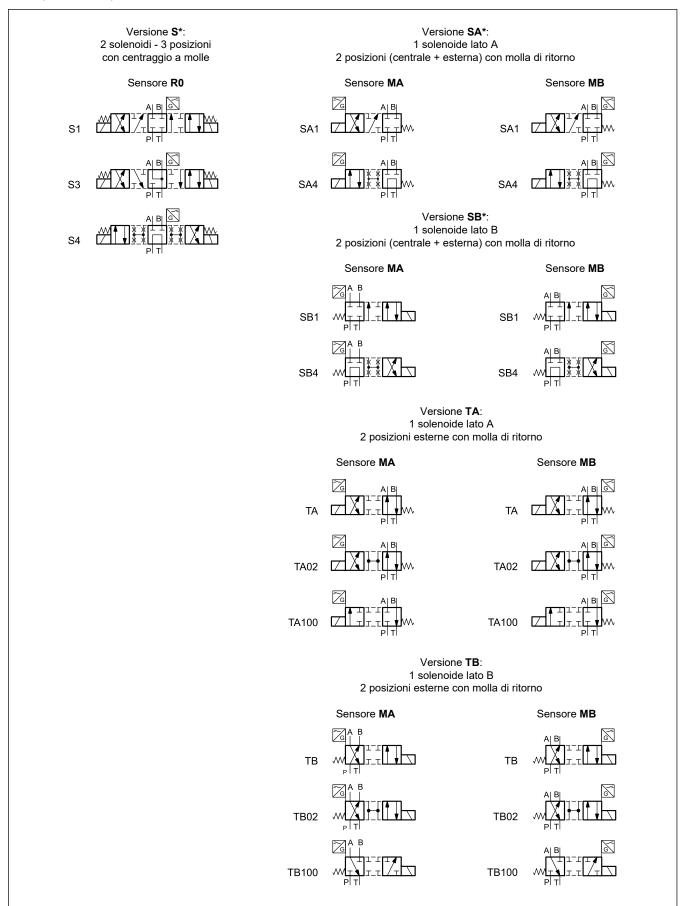

- EN 20430:2020 Macchine per materie plastiche e gomma Macchine per stampaggio a iniezione Requisiti di sicurezza
- EN 16092-3:2018 Sicurezza macchine utensili Presse Parte 3: Requisiti di sicurezza per presse idrauliche
- EN 12622:2014 Sicurezza delle macchine utensili Presse piegatrici idrauliche
- EN 422:2009 Macchine per materie plastiche e gomma Macchine per soffiaggio Requisiti di sicurezza

La condizione di conformità di un componente verificato è in larga parte peculiare dell'applicazione per cui sarà utilizzato.

Certificato: TÜV IT 14 MAC 0043

2 - IDENTIFICAZIONE DELLE ELETTROVALVOLE A COMANDO DIRETTO

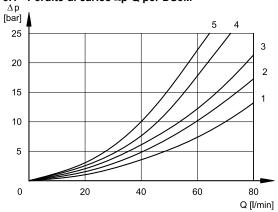
2.1 - Codice di identificazione


NOTA: Verificare disponibilità del cursore/ tipo di sensore nelle tabelle seguenti

		CURSORI						
DS3		S*	SA*	SB*	TA TA100	TB TB100		
H.	R0	х						
IO O	MA		х	х	х	х		
E SEI	MB		х	х	х	х		

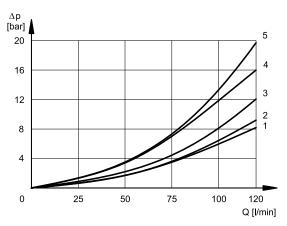
DS5		CURSORI						
		S*	SA*	SB*	TA TA100	TA02 TB02	TB TB100	
RE	R0	х						
NSOF	MA		х	х	х	х	х	
TF	МВ		х	х	х	х	х	

41 505/123 ID 2/30


2.2 - Tipi di cursore per elettrovalvole DS3M e DS5M

3 - CURVE CARATTERISTICHE DELLE ELETTROVALVOLE DIRETTE

(valori ottenuti con viscosità 36 cSt a 50 °C)

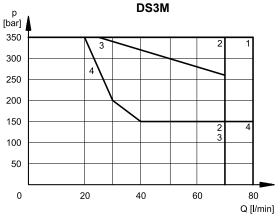

3.1 - Perdite di carico Δp -Q per DS3M

DIREZIONE DEL FLUSSO							
	"	JIREZIO	INE DEL	FLU550	J		
TIPO DI CURSORE	P→A	P→B	A→T	В→Т	P→T		
		CURVE DEL DIAGRAMMA					
S1, SA1, SB1	2	2	3	3	-		
S3	3	3	1	1	-		
S4, SA4, SB4	5	5	5	5	3		
TA, TB	2	2	2	2			
TA100, TB100	4	4	4	4	-		

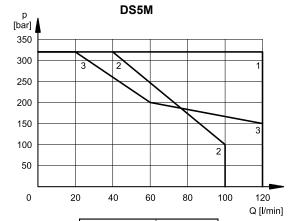
Per le perdite di carico del cursore S3 in posizione centrale fare riferimento alla curva 3.

3.2 - Perdite di carico ∆p-Q per DS5M

	DIREZIONE DEL FLUSSO						
TIPO DI CURSORE	P→A	Р→В	A→T	В→Т	P→T		
		CURVE I	DEL DIA	GRAMMA	Ä		
S1, SA1, SB1	2	2	1	1	-		
S3	2	1	2	3	-		
S4, SA4, SB4	1	1	2	2	4		
TA, TB, TA02, TB02	3	3	2	2	-		
TA100, TB100	2	2	2	2	-		


Per le perdite di carico del cursore S3 in posizione centrale fare riferimento alla curva 5.

3.3 - Limiti di impiego per elettrovalvole DS3M e DS5M


Le curve delimitano i campi di funzionamento portata in funzione della pressione per le diverse esecuzioni dell'elettrovalvola.

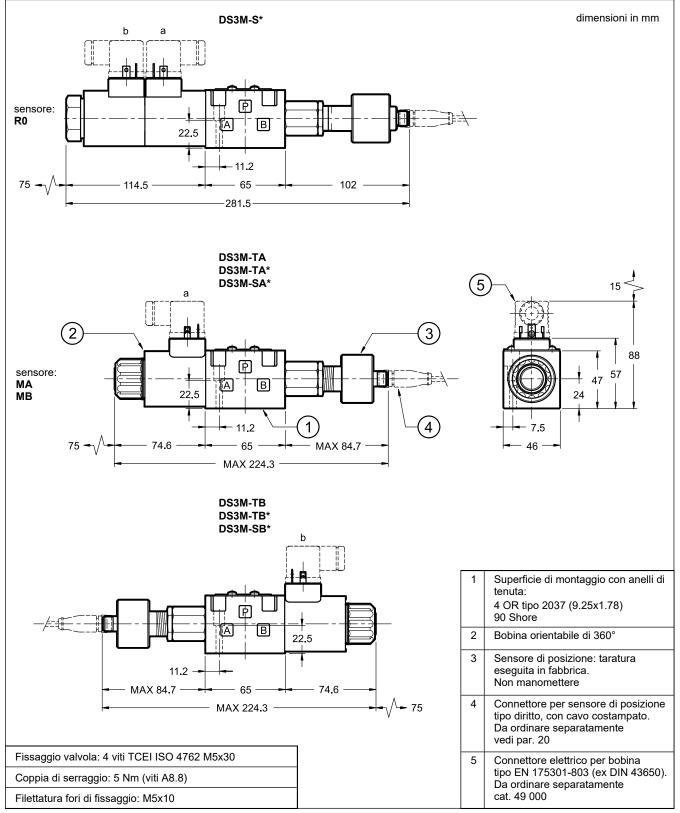
Le prove sono state eseguite secondo la norma ISO 6403, con tensione di alimentazione al 90% del valore nominale e con magneti a temperatura di regime. I valori indicati sono rilevati, con olio minerale viscosità 36 cSt a 50 °C e filtrazione ISO 4406:1999 classe 18/16/13.

I limiti di impiego possono notevolmente ridursi se una valvola a 4 vie viene impiegata in 3 vie con l'attacco A o B tappato o senza portata.

CURSORE	CURVA		
CONSORE	P→A	Р→В	
S1	1	1	
S3	4	4	
S4	2	2	
TA, TB	1	1	
TA100, TB100	3	3	

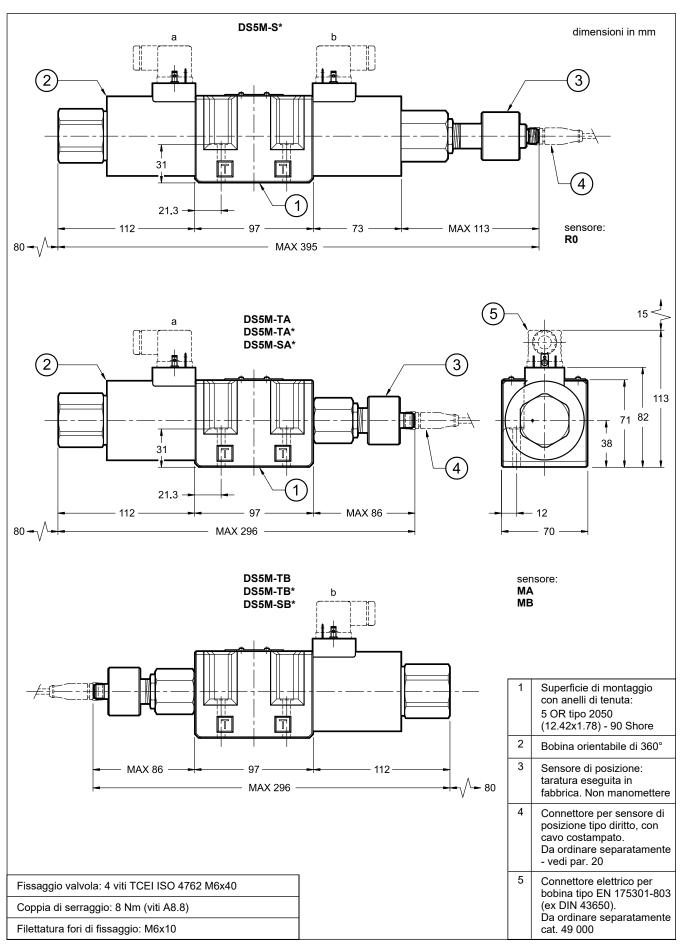
CURSORE	COF	RVA
CONSONE	P→A	Р→В
S1	1	1
S3	3	3
S4	2	2
TA02	1	1
TA, TA100	1	1

41 505/123 ID 4/30

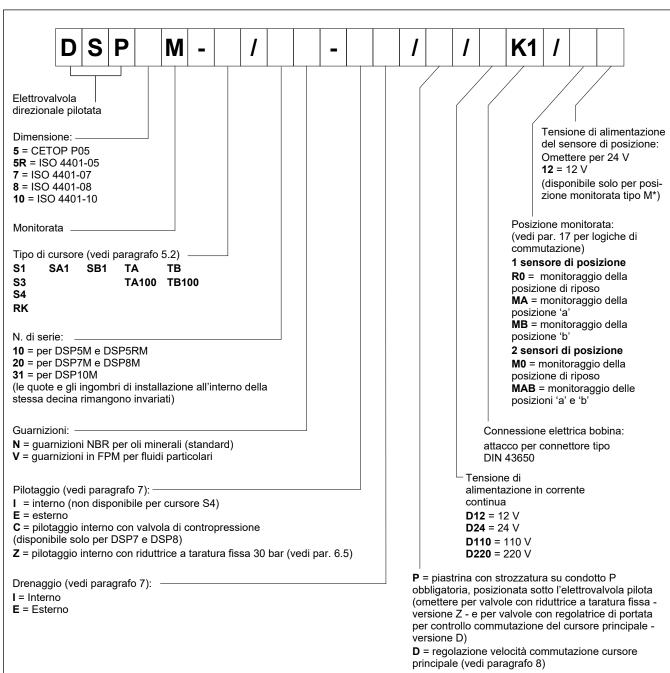

3.4 - Tempi di commutazione

I valori indicati sono rilevati secondo ISO 6403, con olio minerale viscosità 36 cSt a 50°C.

TEMPI [ms]	INSERZIONE	DISINSERZIONE
DS3M	25 ÷ 75	15 ÷ 25


TEMPI [ms]	INSERZIONE	DISINSERZIONE
DS5M	100 ÷ 150	20 ÷ 50

4 - DIMENSIONI DI INGOMBRO E DI INSTALLAZIONE VALVOLE DIRETTE

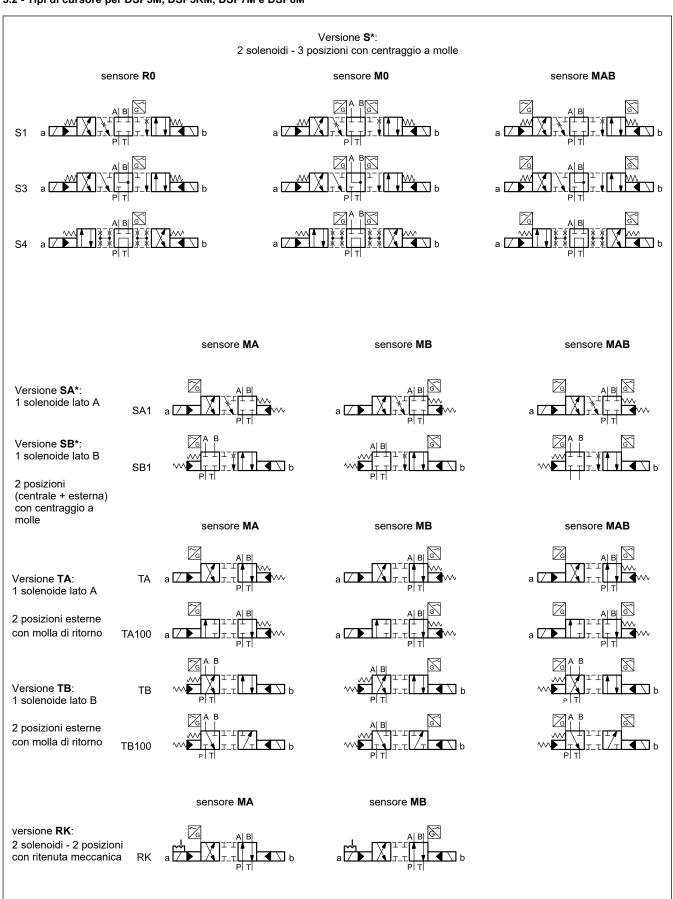

41 505/123 ID 5/30

5 - IDENTIFICAZIONE DELLE ELETTROVALVOLE PILOTATE

5.1 - Codice di identificazione

NOTA: Verificare disponibilità del cursore/tipo di sensore qui sotto:

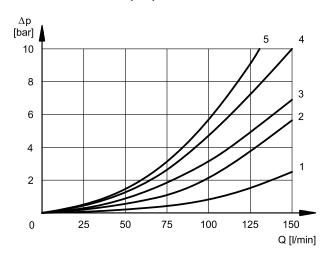
		CURSORI						
		S*	SA* SB*	TA TB	TA100 TB100	RK		
	R0	х						
	MA		х	х	х	х		
) ORE	МВ		х	х	х	х		
TIPO DI SENSORE	МО	х						
SE	MAB	х	Х	Х	Х			


NOTA: per DSP10M sono disponibili esclusivamente i cursori S1 e S4, con sensore R0 o M0.

NOTA: In conformità alla normativa EN 693:2011 le valvole sono prive di comando manuale

41 505/123 ID 7/30

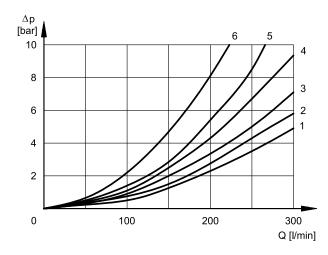
5.2 - Tipi di cursore per DSP5M, DSP5RM, DSP7M e DSP8M



41 505/123 ID **8/30**

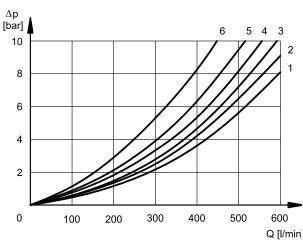
6 - CURVE CARATTERISTICHE

(valori ottenuti con viscosità 36 cSt a 50 °C)


6.1 - Perdite di carico Δp -Q per DSP5M - DSP5RM

	DIREZIONE DEL FLUSSO					
TIPO DI CURSORE	P→A	P→B	A→T	В→Т	P→T	
		CURVE	DEL DIA	GRAMMA	4	
S1, SA1	4	4	1	1	-	
S3	4	4	1	1	-	
S4	5	5	2	3	5	
TA, TB	4	4	1	1	-	
TA100, TB100	3	3	1	1	-	
RK	4	4	1	1	-	

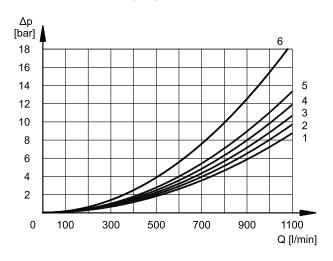
Per le perdite di carico del cursore S3 tra le bocche A-T e B-T in posizione centrale fare riferimento alla curva 4.


6.2 - Perdite di carico Δ p-Q per DSP7M

	DIREZIONE DEL FLUSSO						
TIPO DI CURSORE	P→A	P→B	A→T	В→Т	P→T		
	(CURVE DEL DIAGRAMMA					
S1, SA1	1	1	4	5	-		
S3	1	1	5	5	-		
S4	2	2	5	6	5		
TA, TB	1	1	4	5	-		
TA100, TB100	3	3	3	5	-		
RK	1	1	4	5	-		

Per le perdite di carico del cursore S3 in posizione centrale fare riferimento alla curva 5.

6.3 - Perdite di carico $\Delta \text{p-Q}$ per DSP8M


		IREZIO	NE DEL	FLUSS	Э
TIPO DI CURSORE	P→A	P→B	A→T	В→Т	P→T
	(CURVE [DEL DIA	GRAMMA	À
S1, SA1	2	2	3	3	-
S3	2	2	2	1	-
S4	4	4	3	5	6
TA, TB	2	2	3	3	-
TA100, TB100	5	5	5	5	-
RK	2	2	3	3	-

Per le perdite di carico del cursore S3 tra le bocche A-T e B-T in posizione centrale fare riferimento alla curva 4.

41 505/123 ID 9/30

6.4 - Perdite di carico ∆p-Q per DSP10M

		DIREZIONE DEL FLUSSO				
TIPO DI CURSORE	P→A	P→B	A→T	В→Т	P→T	
	CURVE DEL DIAGRAMMA					
S1	2	2	2	3	-	
S4	2	2	4	5	6	

6.5 - Limiti di impiego delle elettrovalvole pilotate

PRESSIONI	DSP5M DSP5RM	DSP7M	DSP8M	DSP10M
Pressione massima in P, A, B	320	350	350	350
Pressione massima sulla linea T con drenaggio interno	210	210	210	210
Pressione massima sulla linea Y	210	210	210	210
Pressione di pilotaggio minima NOTA 1	5 ÷ 10	5 ÷ 12	5 ÷ 12	6 ÷ 12
Pressione di pilotaggio massima NOTA 2	210	210	210	280

NOTA 1: La pressione di pilotaggio minima a basse portate può essere il valore inferiore del campo ma con portate più elevate è necessario il valore più alto.

NOTA 2: Se la pressione di esercizio è superiore ai limiti indicati, prevedere una linea di pilotaggio esterna con p_{max} entro i limiti menzionati e acquistare la valvola con pilotaggio di tipo E.

Per le valvole DSP7M e DSP8M, se non è possibile avere a linea di pilotaggio esterna, si deve optare per la versione con pilotaggio tipo Z (vedi punto 7.2), con max 350 bar in ingresso in P. Aggiungere la lettera **Z** al codice di identificazione per ordinare questa opzione (vedi punto 5.1).

PORTATE MASSIME		DSP5M DSP5RM		DS	P7M	DS	P8M	DSI	P10M
					PRES	SIONI			
Tipo di cursore		210 bar	320 bar	210 bar	350 bar	210 bar	350 bar	210 bar	350 bar
S4 - TA100	[l/min]	120	100	200	150	500	450	750	600
S1 - S3 - TA - RK	[l/min] -	150	120	300	300	600	500	900	700

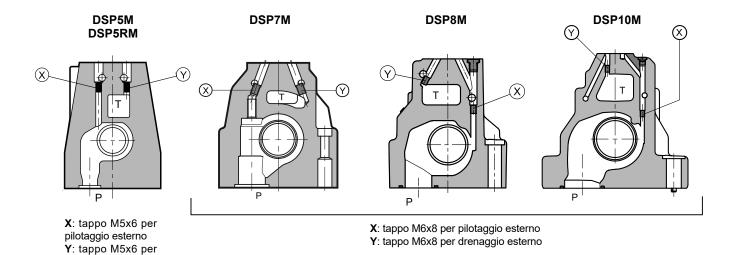
6.6 - Tempi di risposta

I valori indicati si riferiscono ad un'elettrovalvola funzionante con pressione di pilotaggio = 100 bar, con olio minerale a temperatura di 50° C, viscosità 36 cSt e con collegamenti PA e BT.

I tempi di inserzione e disinserzione sono rilevati alla variazione di pressione alle utenze.

TEMPI (± 10%)	INSER	ZIONE	DISINSERZIONE	
[ms]	2 Pos.	3 Pos.	2 Pos.	3 Pos.
DSP5M - DSP5RM	60	50	50	40
DSP7M	75	60	60	45
DSP8M	100	70	80	50
DSP10M	-	100	-	140

41 505/123 ID 10/30

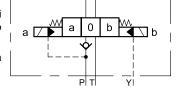

7 - PILOTAGGIO E DRENAGGIO

drenaggio esterno

Le valvole DSP*M sono disponibili con pilotaggio e drenaggio sia interno che esterno. La versione con drenaggio esterno consente una maggiore contropressione sullo scarico.

NOTA: La configurazione di pilotaggi e drenaggi deve essere scelta in fase di ordine. La modifica successiva è consentita solo ad operatori specializzati autorizzati o in fabbrica.

	TIPO DI VALVOLA	Montaggio tap	
		X	Υ
IE	pilotaggio interno e drenaggio esterno	NO	SI
II	pilotaggio interno e drenaggio interno	NO	NO
EE	pilotaggio esterno e drenaggio esterno	SI	SI
EI	pilotaggio esterno e drenaggio interno	SI	NO

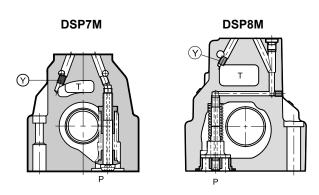


7.1 - Pilotaggio tipo C: pilotaggio interno con valvola di contropressione incorporata nella via P

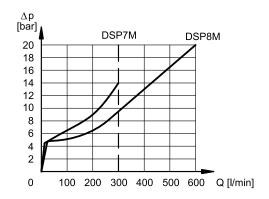
Le valvole DSP7M e DSP8M sono disponibili con valvola di contropressione incorporata nella bocca P.

Questa serve per ottenere la pressione minima necessaria ad alimentare il pilotaggio nelle valvole in cui la linea di pressione (P) e lo scarico (T) risultano collegate quando la valvola è in posizione di riposo (cursore tipo S4).

La perdita di carico della valvola di contropressione va sommata a quella della valvola principale indicata a pag. 9.



La pressione di apertura è di circa 5 bar per le DSP7M e 6 bar per le DSP8M a 15 l/min.

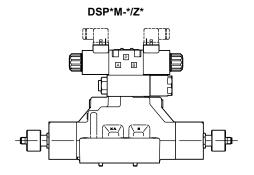

NOTA: La valvola di contropressione non garantisce la tenuta quindi non è da intendersi come valvola di ritegno.

Per la richiesta aggiungere l'opzione C nella sigla (vedi paragrafo 5.1).

Solo per DSP7M, la valvola di contropressione è fornibile anche separatamente ed è facilmente montabile nel condotto P del distributore principale. Per ordinare la valvola di contropressione a parte specificare il codice **0266577**.

pilotaggio sempre interno Y: tappo M6x8 per drenaggio esterno

Curva relativa alla perdita di carico del solo corpo con valvola di contropressione inserita a cui va sommata la perdita di carico relativa al cursore di riferimento (vedi par. 6).


41 505/123 ID 11/30

7.2 - Pilotaggio tipo Z: pilotaggio interno con valvola riduttrice di pressione incorporata

Il pilotaggio tipo Z consiste in un pilotaggio interno con pressione 30 bar, ottenuto inserendo una valvola riduttrice di pressione a taratura fissa tra lo stadio principale e la valvola pilota.

Per queste versioni considerare un aumento in altezza di 30 mm.


8 - OPZIONI

8.1 - Regolazione della velocità di spostamento del cursore principale: D

Interponendo una valvola con doppia regolazione di portata (tipo QTM3) tra l'elettrovalvola pilota e lo stadio principale, è possibile controllare il flusso di alimentazione al pilota e quindi regolare la fluidità della commutazione.

Per queste versioni considerare un aumento in altezza di 30 mm.

Per ordinare questa versione aggiungere la lettera ${\bf D}$ nel codice di identificazione (vedi par. 5.1).

dimensioni in mm

	DSP5	DSP7	DSP8	DSP10
Α	218	225	254	307

41 505/123 ID 12/30

9 - CARATTERISTICHE ELETTRICHE

9.1 - Elettromagneti

Sono costituiti essenzialmente da due parti: il tubo e la bobina. Il tubo è avvitato al corpo valvola e contiene l'ancora mobile che scorre immersa in olio, senza usura. La parte interna, a contatto con il fluido idraulico, garantisce la dissipazione termica.

La bobina è fissata sul tubo con una ghiera e può essere ruotata e bloccata compatibilmente con gli ingombri.

NOTA 1: per ridurre ulteriormente le emissioni si consiglia l'impiego di connettori tipo H, che prevengono le sovratensioni all'apertura del circuito elettrico di alimentazione delle bobine (vedi cat. 49 000).

NOTA 2: Il grado di protezione IP65 è riferito all'intera valvola ed è garantito solo con valvola e connettori entrambi installati e collegati correttamente.

VARIAZIONE TENSIONE DI ALIMENTAZIONE	± 10% Vnom
FREQUENZA D'INSERZIONE MAX	
DS3M	15.000 ins/ora
DS5M	13.000 ins/ora
DSP5M - DSP5RM	5.000 ins/ora
DSP7M	5.000 ins/ora
DSP8M	4.000 ins/ora
DSP10	3.000 ins/ora
DURATA D'INSERZIONE	100%
COMPATIBILITÀ ELETTROMAGNETICA (EMC) (NOTA 1)	Conforme alla direttiva 2014/30/UE
BASSA TENSIONE	Conforme alla direttiva 2014/35/UE
CLASSE DI PROTEZIONE:	
Agenti atmosferici (IEC 60529)	IP 65 (NOTA 2)
Isolamento avvolgimento (VDE 0580)	classe H
Impregnazione	classe F

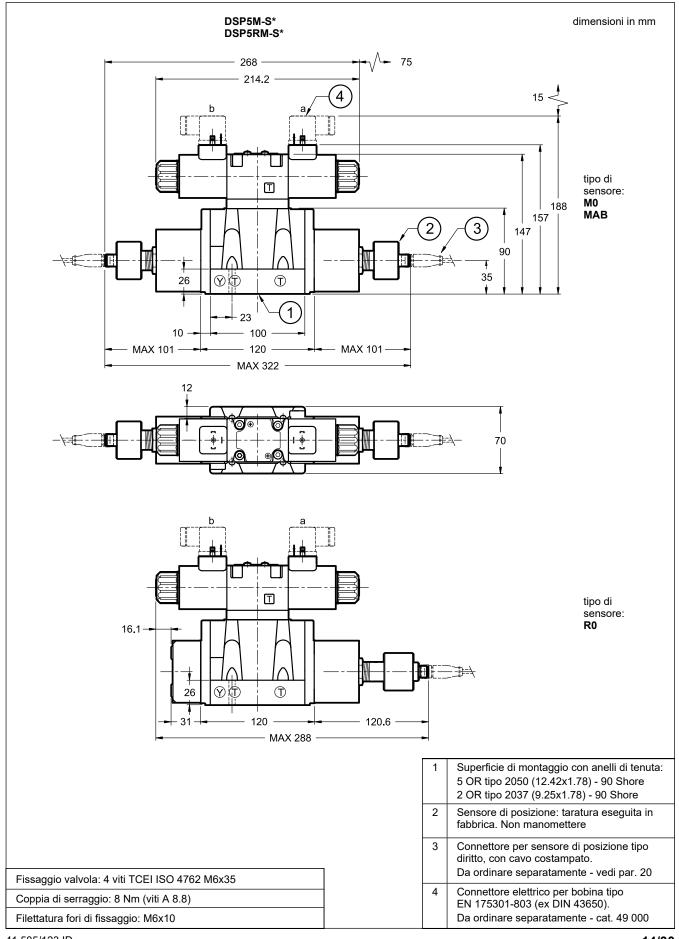
9.2 - Corrente e potenza elettrica assorbita

In tabella sono riportati i valori di assorbimento relativi ai vari tipi di bobina per alimentazione elettrica in corrente continua.

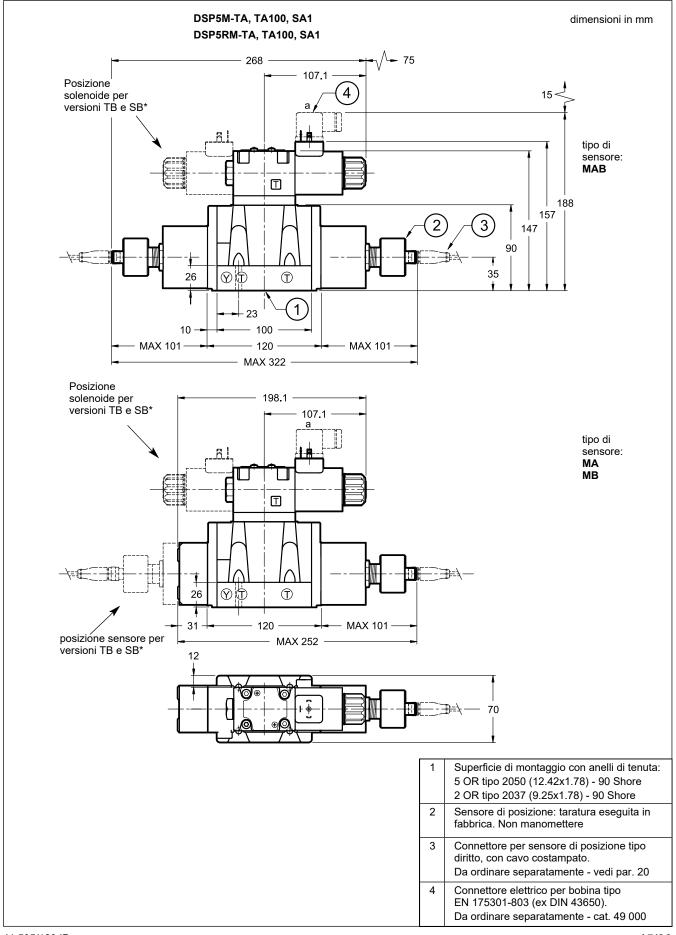
DS3M, DSP5M, DSP5RM, DSP7M, DSP8M e DSP10M (valori \pm 10%)

Suffisso	Tensione nominale [V]	Resistenza a 20°C [Ω]	Corrente assorbita [A]	Potenza assorbita [W]	Codice bobina
D12	12	4,4	2,72	32,7	1903080
D24	24	18,6	1,29	31	1903081
D110	110	436	0,26	28,2	1903464
D220	220	1758	0,13	28,2	1903465

DS5M (valori ± 5%)

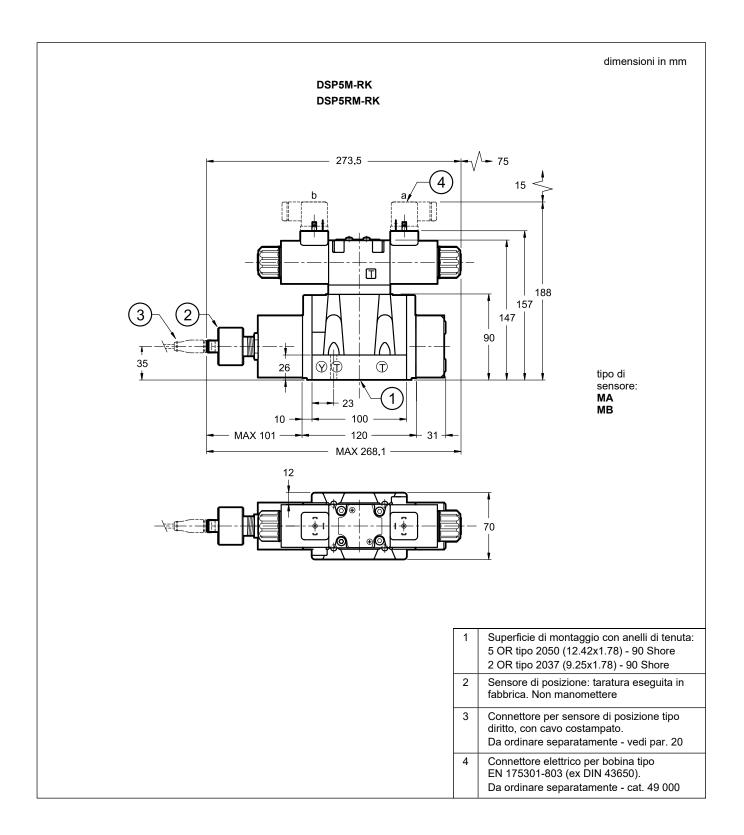

Suffisso	Tensione nominale [V]	Resistenza a 20°C [Ω]	Corrente assorbita [A]	Potenza assorbita [W]	Codice bobina
D12	12	3	4	48	1903550
D24	24	12	2	48	1903551
D110	110	252	0,44	48	1903554
D220	220	1010	0,22	48	1903555

10 - CONNETTORI ELETTRICI


Le elettrovalvole vengono fornite senza connettori. I connettori tipo EN 175301-803 (ex DIN 43650) per connessione elettrica K1 possono essere ordinati separatamente; vedere catalogo 49 000.

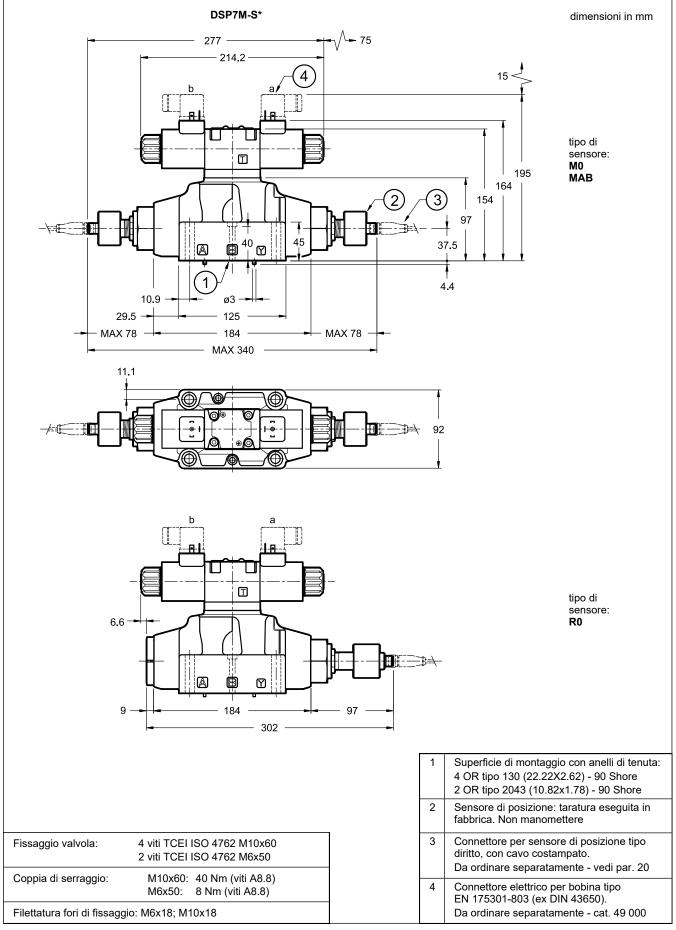
41 505/123 ID 13/30

11 - DIMENSIONI DI INGOMBRO E DI INSTALLAZIONE DSP5M E DSP5RM

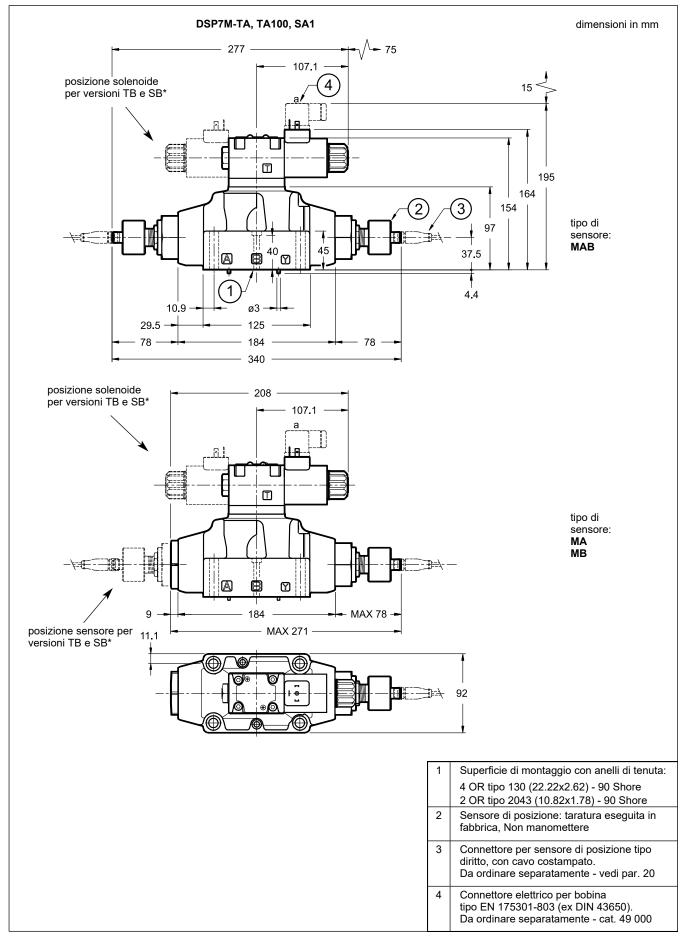


41 505/123 ID 14/30

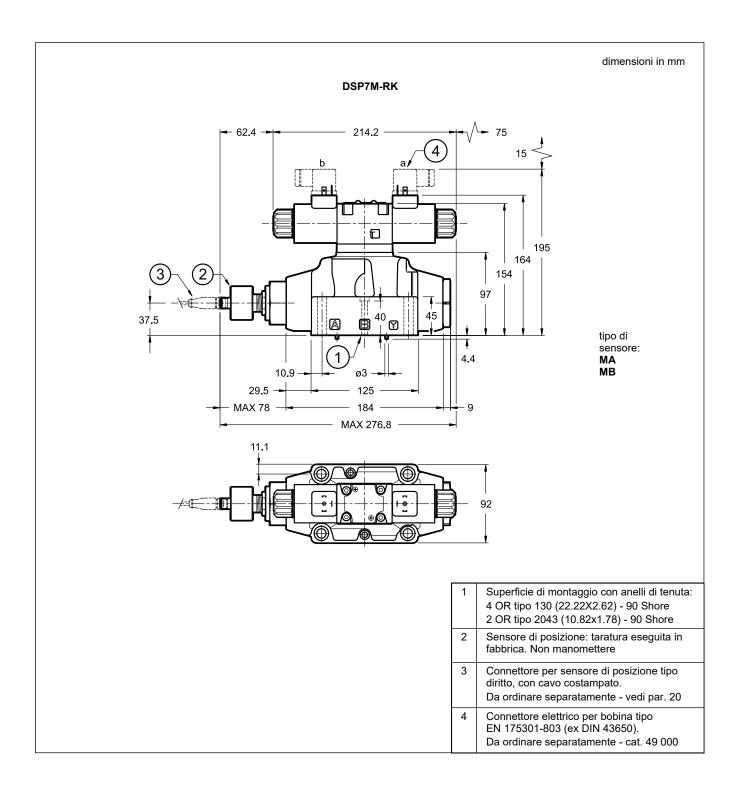
41 505/123 ID 15/30

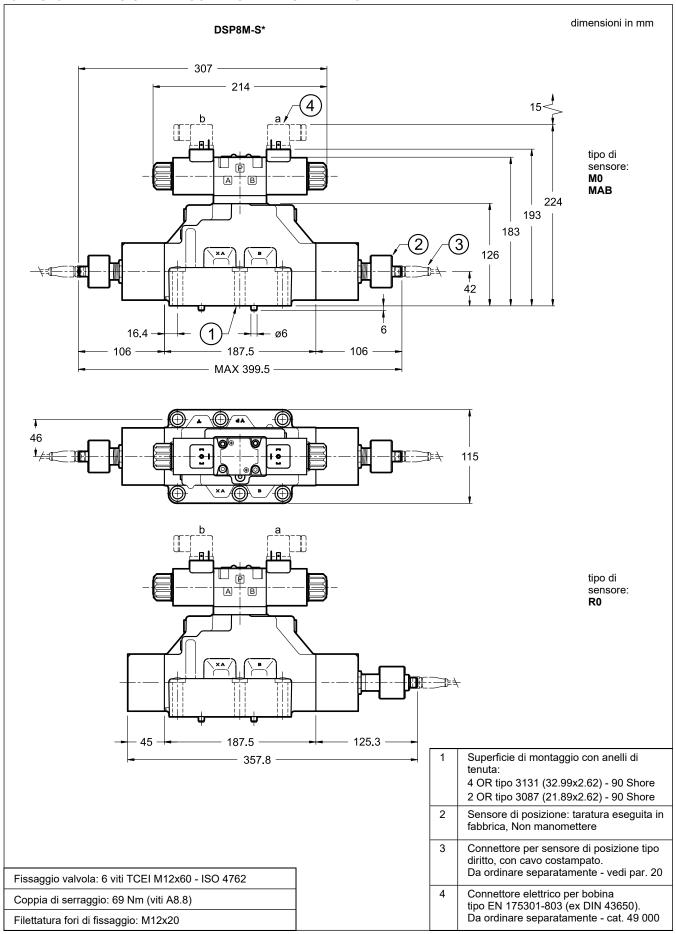


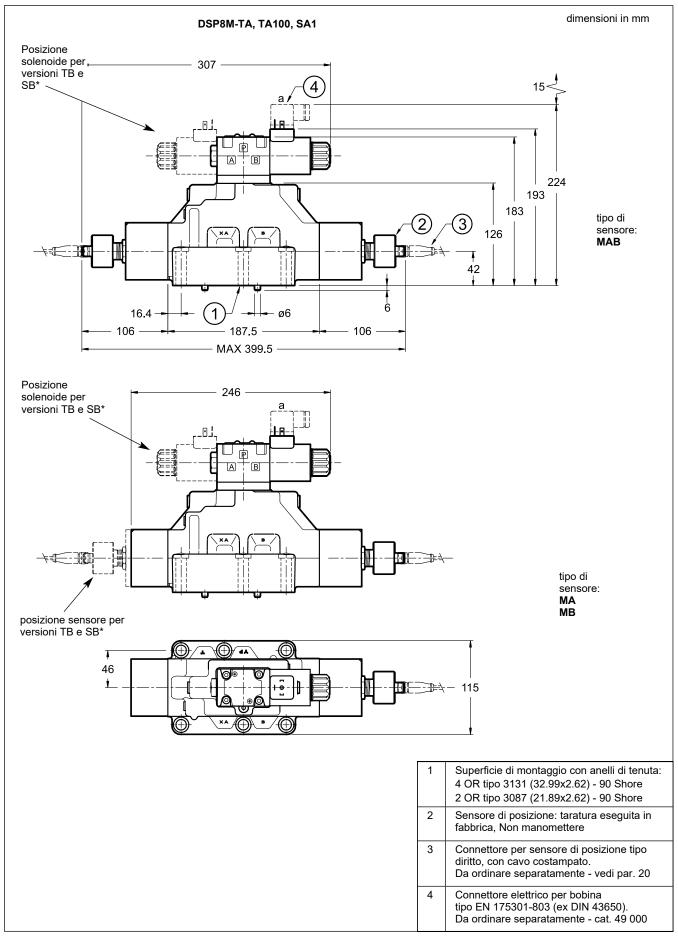
41 505/123 ID 16/30



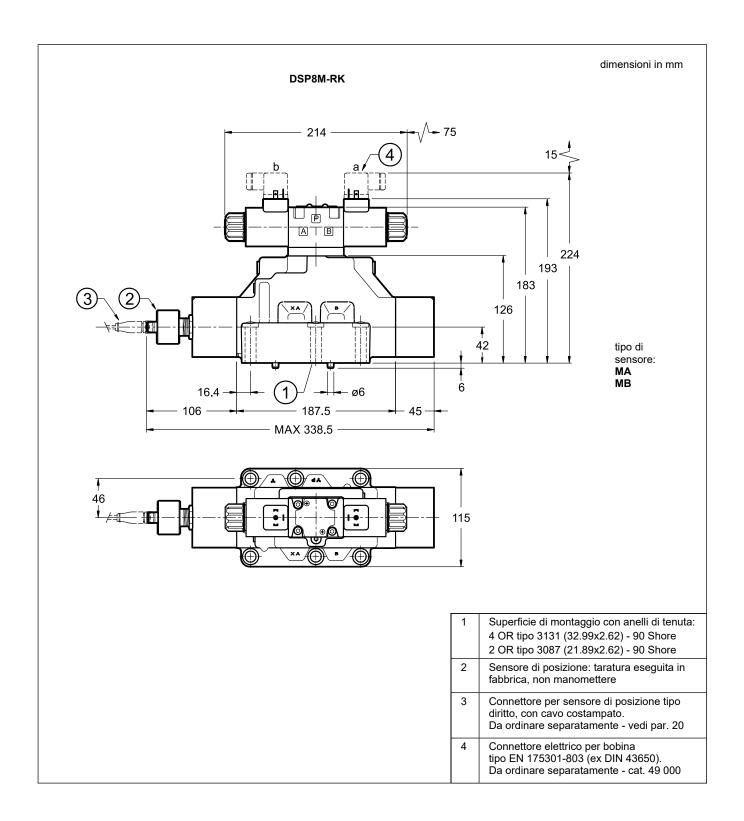
12 - DIMENSIONI DI INGOMBRO E DI INSTALLAZIONE DSP7M


41 505/123 ID 17/30

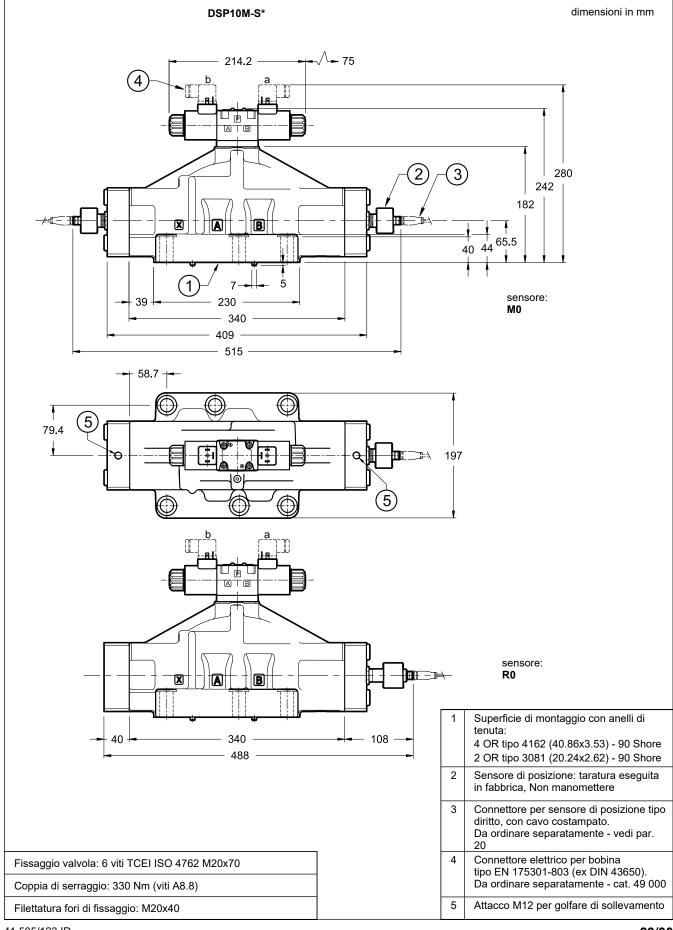

41 505/123 ID 18/30


41 505/123 ID 19/30

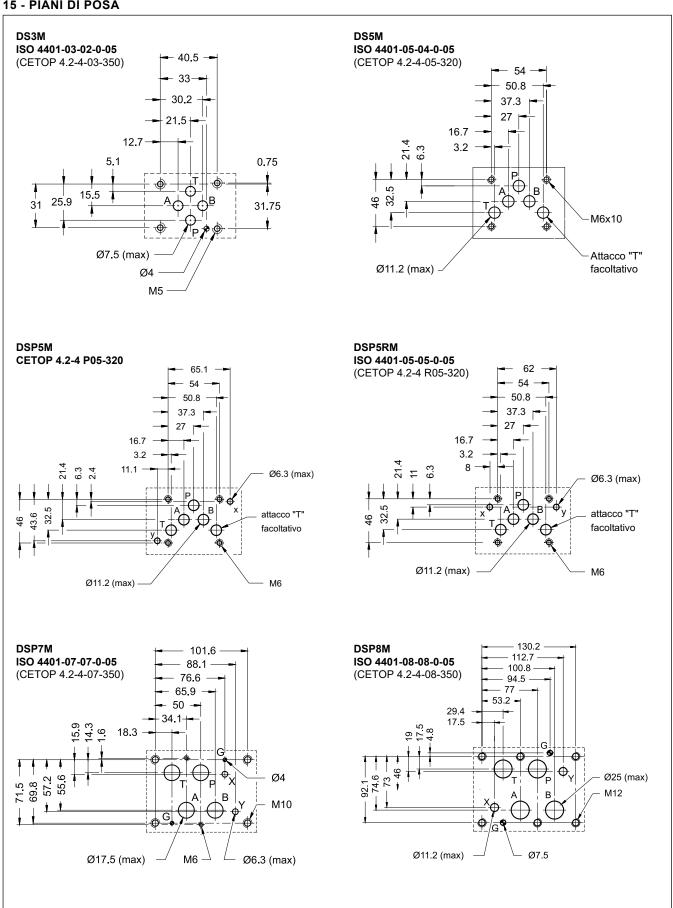
13 - DSP8M DIMENSIONI DI INGOMBRO E DI INSTALLAZIONE



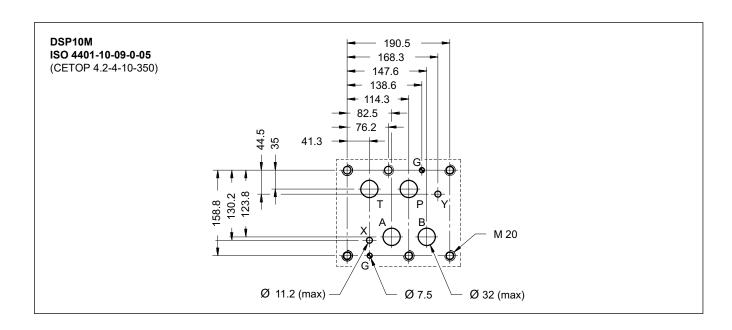
41 505/123 ID **20/30**



41 505/123 ID **21/30**


41 505/123 ID **22/30**

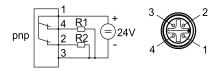
14 - DSP10M DIMENSIONI DI INGOMBRO E DI INSTALLAZIONE



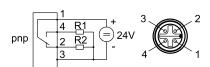
41 505/123 ID 23/30

15 - PIANI DI POSA

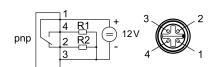
41 505/123 ID 24/30


16 - SENSORI DI POSIZIONE

ATTENZIONE! Non è permesso disassemblare la valvola. I sensori non devono in alcun modo essere svitati o manomessi.


Le versioni M0 e MAB hanno due sensori di posizione; considerare che lo schema di connessione mostrato deve essere eseguito per ciascun sensore.

SCHEMA DI CONNESSIONE RO


Pin	Valori	Funzione
1	+24 V	Alimentazione
2	NC	Normalmente chiuso -
3	0 V	-
4	NC	Normalmente chiuso +

SCHEMA DI CONNESSIONE M*

Pin	Valori	Funzione
1 +24 V Alimentazione		Alimentazione
2	NC	Normalmente chiuso
3	0 V	-
4	NO	Normalmente aperto

SCHEMA DI CONNESSIONE M*12

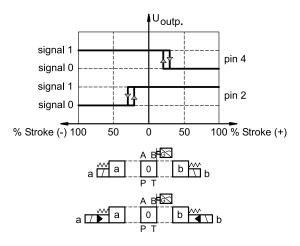
Pin	Valori	Funzione		
1	+12V	Alimentazione		
2	NC	Normalmente chiuso		
3	0 V	-		
4	NO	Normalmente aperto		

CARATTERISTICHE ELETTRICHE							
Campo tensione di alimentazione 24 V DC 12 V DC	V DC	20 ÷ 32 10.5 ÷ 16					
Corrente assorbita	Α	0.4					
Max carico in uscita	Α	400					
Uscita		2 PNP					
Protezioni elettriche		inversione di polarità, cortocircuito					
Isteresi	mm	≤ 0.1					
Campo temperatura di esercizio	°C	-25 / +80					
Classe di protezione dagli agenti atmosferici (IEC 60529)		IP65					
Compatibilità elettromagnetica (EMC)		Conforme alla direttiva 2014/30/UE					

41 505/123 ID **25/30**

D

DS(P)*M

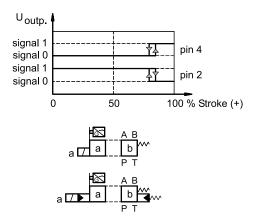

17 - LOGICHE DI COMMUTAZIONE

Duplomatic offre un'ampia gamma di versioni di monitoraggio e per le valvole pilotate esiste anche il monitoraggio con segnale ridondante.

17.1 - Monitoraggio R0

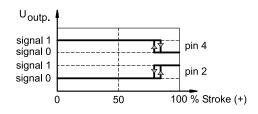
Monitoraggio della posizione a riposo (centro) con un sensore di posizione.

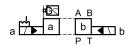
Disponibile sia sulle valvole a comando diretto sia sulle valvole pilotate; tipo di cursore \mathbb{S}^*



17.2 - Monitoraggio MA

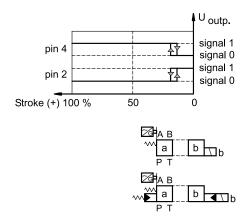
Monitoraggio della posizione eccitata con un sensore di posizione.


Disponibile sia sulle valvole a comando diretto sia sulle valvole pilotate;


tipo di cursore SA*, TA, TA02, TA100

Monitoraggio della posizione 'a' con un sensore di posizione.

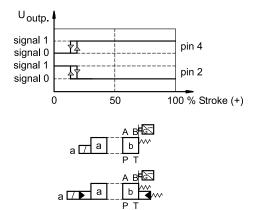
Disponibile solo sulle valvole pilotate; tipo di cursore RK



Monitoraggio della posizione diseccitata con un sensore di posizione.

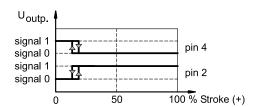
Disponibile sia sulle valvole a comando diretto sia sulle valvole pilotate;

tipo di cursore SB*, TB, TB02, TB100



17.3 - Monitoraggio MB

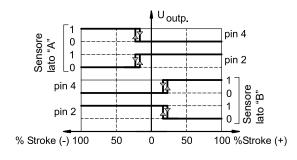
Monitoraggio della posizione diseccitata con un sensore di posizione.

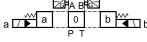

Disponibile sia sulle valvole a comando diretto sia sulle valvole pilotate;

tipo di cursore SA*, TA, TA02, TA100

Monitoraggio della posizione 'b' con un sensore di posizione.

Disponibile solo sulle valvole pilotate; tipo di cursore RK

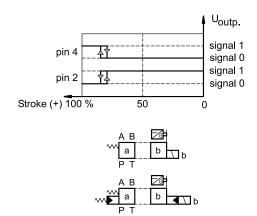



17.4 - Monitoraggio M0

41 505/123 ID

Monitoraggio della posizione a riposo (centro) con due sensori di posizione.

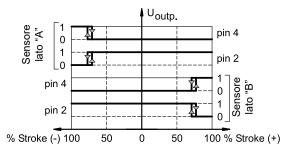
Disponibile solo per valvole pilotate; tipo di cursore S*



Monitoraggio della posizione eccitata con un sensore di posizione.

Disponibile sia sulle valvole a comando diretto sia sulle valvole pilotate;

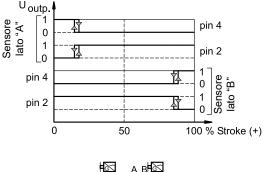
tipo di cursore SB*, TB, TB02, TB100

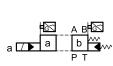

D

DS(P)*M

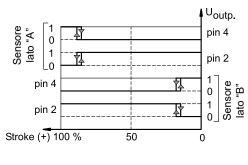
17.5 - Monitoraggio MAB

Monitoraggio di entrambe le posizioni esterne con due sensori di posizione.


Disponibile solo per valvole pilotate; tipo di cursore S*



Monitoraggio della posizione diseccitata sul lato A. Monitoraggio della posizione eccitata sul lato B.


Disponibile solo per valvole pilotate; tipo di cursore SA1, TA, TA100

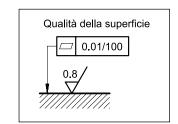
Monitoraggio della posizione eccitata sul lato A. Monitoraggio della posizione diseccitata sul lato B.

Disponibile solo per valvole pilotate; tipo di cursore SB1, TB, TB100

18 - FLUIDI IDRAULICI

Usare fluidi idraulici a base di olio minerale tipo HL o HM secondo ISO 6743-4. Per questi tipi di fluidi, utilizzare guarnizioni in NBR (codice N). Per fluidi tipo HFDR (esteri fosforici) utilizzare guarnizioni in FPM (codice V). Per l'uso di altri tipi di fluidi come ad esempio HFA, HFB, HFC consultare il nostro Ufficio Tecnico.

L'esercizio con fluido a temperatura superiore a 80 °C comporta un precoce decadimento della qualità del fluido e delle guarnizioni. Il fluido deve essere mantenuto integro nelle sue proprietà fisiche e chimiche.


19 - INSTALLAZIONE

ATTENZIONE! Queste valvole devono essere installate e messe in servizio da personale qualificato. Prima di procedere all'installazione, avviamento o manutenzione è obbligatorio leggere il Manuale di Uso e Manutenzione, fornito insieme alla valvola.

Il montaggio è libero nelle esecuzioni con molle di centraggio e di richiamo. Per le valvole in esecuzione RK - senza molle e con ritenuta meccanica - si consiglia il montaggio con l'asse orizzontale.

Il fissaggio delle valvole viene fatto mediante viti o tiranti con appoggio su una superficie rettificata a valori di planarità e rugosità uguali o migliori a quelli indicati dalla apposita simbologia. Se i valori minimi di planarità e/o rugosità non sono rispettati, possono facilmente conseguire trafilamenti di fluido tra valvola e piano di appoggio.

41 505/123 ID 28/30

20 - CONNETTORI PER SENSORI

Il connettore femmina per sensori di posizione può essere ordinato separatamente, secondo le descrizioni sotto riportate. Il grado di protezione IP sotto indicato è valido solo con connettore correttamente serrato sul relativo contropezzo.

codice: 3491000008 descrizione: ECM4S/M12L/10/L5

connettore diritto precablato M12x1 con cavo costampato

4 poli, femmina, IP67, IP68, IP69K

Ø 4.7 mm; lunghezza 5 mt; cavo:

sezione 0.34 mm² conduttori:

rivestimento poliuretano resistente agli oli

LED no

descrizione: ECM4S/M12S/10/L5 codice: 3491000009

connettore angolare precablato M12x1 con cavo costampato

4 poli, femmina, IP67, IP68, IP69K

cavo: Ø 4.7 mm; lunghezza 5 mt;

conduttori: sezione 0.34 mm²

rivestimento poliuretano resistente agli oli

LED no

Colori dei fili per connettori ECM4*

ΒN marrone 2 WH bianco 3 BU blu

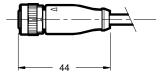
Bk nero

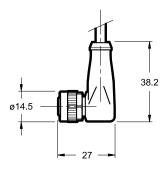
codice: 3491001002 descrizione: EC4S/M12S/10

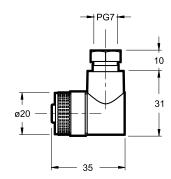
connettore circolare M12 con bloccaggio a vite, angolare, a cablare.

4 poli, femmina, IP67

IEC 61076-2-101 (Ed. 1) / IEC 60947-5-2 rif. norma:


PG7 pressacavo: Ø 4 ÷ 6 mm cavo:


conduttori: max 0.75 mm²


contatti: a vite

rivestimento poliammide (nylon)

LED no

21 - PIASTRE DI BASE

(vedi catalogo 51 000)

	DS3M	DS5M	DSP5M	DSP7M	DSP8M
Tipo ad attacchi sul retro	PMMD-Al3G	PMD4-AI4G	PME4-AI5G	PME07-Al6G	
Tipo ad attacchi laterali	PMMD-AL3G	PMD4-AL4G	PME4-AL5G	PME07-AL6G	PME5-AL8G
Filettatura degli attacchi P, T, A, B	3/8" BSP	3/4" BSP (PMD4-AI4G) 1/2" BSP (PMD4-AL4G)	3/4" BSP	1" BSP	1 ½" BSP
Filettatura degli attacchi X, Y	-	-	1/4" BSP	1/4" BSP	1/4" BSP

41 505/123 ID 29/30

DUPLOMATIC MS Spa

via Mario Re Depaolini, 24 | 20015 Parabiago (MI) | Italy T +39 0331 895111 | E vendite.ita@duplomatic.com | sales.exp@duplomatic.com duplomaticmotionsolutions.com